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The Comment of Li et al.1 consists of two parts, and the
first part is about the dispersion relation of one-dimensional
�1D� subwavelength cavity proposed by Engheta.2 The exact
dispersion relation for the 1D subwavelength cavity has the
form1

tan�n1kd1�
tan�n2kd2�

= −
n1�2

n2�1
, �1�

where k is the wave number in free space, d1 and d2 are the
thicknesses of the conventional dielectric material �RHM�
and left-handed material �LHM� layers, respectively, and �1
��2� and n1 �n2� are the permeability and refraction index of
the RHM �LHM�, respectively. Since �2�0 and n2�0, Eq.
�1� can be rewritten as tan�n1d1� / tan��n2�d2�=n1��2� / �n2��1.
For a given frequency, the values of k, n1, �n2�, �1, and ��2�
are determined, and obviously there exist possible solutions
of small d1 and d2, for which n1kd1�� /2 and �n2�kd2
�� /2, and d1 decreases when d2 is decreased. Thus, as in-
dicated by Engheta, this dispersion relation does not show
any constraint on the sum of thicknesses of d1 and d2, and
the subwavelength cavity is available in principle. Using the
small-argument approximation for the tangent functions in
Eq. �1�, Engheta further simplified the dispersion relation to

d1

d2
�

��2�
�1

. �2�

The two sides of Eq. �2� are completely equal when the
RHM and LHM layers are perfectly matched in impedance
and Eq. �2� can then be rewritten as d1 /d2= �n2� /n1. In this
special situation, if a wave in the subwavelength cavity
transverses one material layer �with refraction index ni,
where i=1 or 2� and enters another material layer, it then has
a phase change of nikdi and the resonant condition of the
cavity can be physically expressed as 2�inikdi=0, leading to
the dispersion relation of the cavity only depending on the
thickness ratio d1 /d2. However, in a general case where the
two material layers are mismatched, the complete transmis-
sion of a wave from one layer into another includes multiple
reflection-incidence events occurring in the first layer and
thus the total transmitted wave in the second layer has an
effective phase change for transversing the first layer that is
not again linearly proportional to the layer thickness. As a
result, the dispersion relation of the cavity depends on the

specific thicknesses of two material layers in the cavity �as
shown by Eq. �1��. In other words, the dispersion relation
depends on both the ratio and the sum of the two thicknesses.

Undoubtedly, for the general case, Eq. �2� may give a
good estimate of the ratio of d1 and d2 for the design of a
subwavelength cavity at a desired frequency, and the thinner
the cavity is, the more accurate the estimate is. It is known
that a LHM is inherently dispersive and lossy. This means
that �2 is generally a function of frequency and the fre-
quency may also be distinguished from the variation of the
value of �2. However, it is still a problem if the relation �2�
is certainly effective to represent the dispersion relation of
the subwavelength cavity. From the Comment of Li et al.,1 it
seems that they do not realize this problem existing in the
subwavelength cavity. To understand well the cavity as well
as its properties, this problem must be clarified physically.

Let us first consider an ideal case of the LHM in the
cavity, in which the LHM has a frequency region where the
permeability �2 is a constant �but here the permittivity of the
LHM ��2� need not be assumed so� and the resonant fre-
quency lies in this region. In this situation, the resonant fre-
quency of the cavity cannot be determined with the relation
�2�, even when it is able to give a good estimate of the ratio
d1 /d2. However, the dispersion relation �1� can still deter-
mine the resonant frequency for the ideal case because the
frequency is explicitly included in it through the quantity k.
But k vanishes in the derivation of the relation �2� from the
relation �1�. In this derivation, the tangent functions in Eq.
�1� are expanded in Taylor series only to first order. Appar-
ently, for the ideal case, some high-order terms of the expan-
sion shouldn’t be neglected, and when the tangent function is
expanded to third order, the resulted equation becomes

� = �̂ +
�3�̂3 − �3

3�1 + ��2 n1
2k2d2, �3�

where �=d1 /d2, �̂= ��2� /�1, and �=�3 ��2��1 /�1��2�. Equa-
tion �3� corresponds to Eq. �4� in our previous paper3 and it
explicitly contains the quantity k as well as the total thick-
ness of the material layers d=d1+d2. In the ideal case, it is
clear from Eq. �3� that the dispersion relation for the sub-
wavelength cavity depends as closely on the cavity thickness
d as on the thickness ratio �. But this does not contradict
what the cavity thickness is optional for the subwavelength
cavity with a certain frequency, as demonstrated in our pre-
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vious paper. Compared to the relation �3�, the total thickness
effect is completely omitted in the relation �2� and thus it
fails to determine the resonant frequency for the ideal case,
i.e., it fails to represent the dispersion relation. Evidently,
when the LHM in the cavity has a frequency region of inter-
est with small permeability dispersion, i.e., �2 only has a
weak dependence on the frequency, the relation �2� might
give a wrong prediction on the resonant frequency and thus
proves not to be an effective expression for the dispersion
relation. To show this, we assume that in a frequency region
of interest the permeability of the LHM has a form of �2
	−�1�a+bk�, where b reflects the permeability dispersion
over the frequency region, and we rewrite Eq. �3� as

� = a + bk +
�3�̂3 − �3

3�1 + ��2 n1
2k2d2. �4�

When the dispersion parameter b is so small that the second
term on the right side of Eq. �4� is less than the last term
���1 for the general case�, the dispersion relation of the
thin cavity does not again mainly depends on the thickness
ratio �. In this case, the relation �2� is also not enough for the
design of the subwavelength cavity, even if it is able to pro-
vide a good estimate of the thickness ratio and the total
thickness of the cavity must be specified in order to make the
cavity operating at the desired frequency.

Of course, for a nonzero permeability dispersion of the
LHM, the last term in Eq. �4� would be far smaller than the
term bk as long as the total thickness d is decreased so small
and the relation �2� then becomes an effective expression for
the dispersion relation. However, as the LHM is an artificial
material, the thickness of the LHM layer is actually limited
by the size of the unit cell of the material and so is the
thickness of the compact cavity. In a practical case, the rela-
tion �2� even possibly fails to give a good estimate for the
thickness ratio. For example, if the LHM made in Ref. 4 is
used to construct a one-dimensional compact cavity, the
minimal thickness of the LHM layer, which only has a single
layer of unit cells, is equal to 5 mm. The LHM with negative
permittivity and permeability operates at frequencies around

9 GHz. Assuming that the RHM in the cavity is air and we
take the following parameters for the LHM layer: �2=−1.5,
�2=−1, and d2=5 mm. From the relation �2�, the thickness
of the air layer in the cavity is found to be d1=7.5 mm.
However, from the relation �1�, we find the exact thickness
of the air layer to be d1=5.7 mm for the operation frequency
f =9 GHz. Therefore, for a practical case, the relation �2�
might be not as accurate as expected and evidently the total
thickness of the cavity becomes an important effect that must
be included in the dispersion relation.

Even if the thickness of the cavity is allowed to be small
arbitrarily and the last term in Eq. �4� may be completely
neglected in mathematics, the relation �2� still losses some
important effects in physics. In the relation �2�, the permit-
tivity of the LHM ��2� is not included at all but in the rela-
tion �1� it is well included through the refraction index n2.
Thus, even for the case of very thin cavity, the loss of the
LHM from the permittivity �2 cannot be seen to have any
influence on the quality factor of the cavity from the relation
�2�, though it seems to be very accurate. On the other hand,
the influence of the permeability loss on the quality factor
cannot be found out from the relation �2� too, as the ratio of
d1 /d2 is always a real number. And it is more impossible to
find out the effect of the cavity compactness on the quality
factor, which was demonstrated in our previous paper. As the
exact dispersion relation �1� is a transcendental equation, it is
necessary to find its effective approximation for studying
analytically the properties of the cavity and hence the rela-
tion �2� needs to be modified to include some important
physical effects. Here, we would like to point out once more
that as the dispersion relation itself, the relation �2� still
needs to be revised for some theoretical or actual cases, as
discussed above. We wish this reply could clarify the ques-
tions on the dispersion relation of the subwavelength cavity.

The second part of the Comment of Li et al. is about the
resonant frequency tolerance and this part is meaningful. In
the analysis of this problem, the dispersion of the LHM layer
in the cavity should be considered, except for the case in
which it is small and the two material layers in the cavity are
mismatched.
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